(논문 요약) Learning to Reason in 13 Parameters (Paper)
핵심 내용
- LoRA: $W’=W+AB$
- $A\in\mathbb{R}^{d\times r}$
- $B\in\mathbb{R}^{r\times k}$
- LoRA-XS: $W’=W+U\Sigma R V^T$
- truncated SVD
- $U\in\mathbb{R}^{d\times r}$
- $\Sigma\in\mathbb{R}^{r\times r}$
- $V\in\mathbb{R}^{k\times r}$
- $R\in\mathbb{R}^{r\times r}$ are trainable parameters.
- truncated SVD
- Tiny-LoRA: $W’=W+U\Sigma \Bigl(\sum_{i=1}^u v_iP_i \Bigl) V^T$
- truncated SVD
- $U\in\mathbb{R}^{d\times r}$
- $\Sigma\in\mathbb{R}^{r\times r}$
- $V\in\mathbb{R}^{k\times r}$
- $P_i\in\mathbb{R}^{r\times r}$ are fixed random matrices
- $v_i$ are only parameters
- truncated SVD
- Table 2 에서 보듯, 적은 숫자의 parameter tuning 으로 finetuning 가능.